References

1. Snijders T, Bosker R. Multilevel Analysis. Sage: London, 1999.

2. Leyland AH, Goldstein H (eds). Multilevel Modelling of Health Statistics. Wiley: Chichester, 2001.

3. Sullivan LM, Dukes KA, Losina E. Tutorial in biostatistics: an introduction to hierarchical linear modelling. Statistics in Medicine 1999; 18:855-888.

4. Zeger SL, Liang K, Albert P. Models for longitudinal data: a generalised estimating equation approach. Biometrics 1988; 44:1049-1060.

5. Liang K-Y, Zeger SL, Qaqish B. Multivariate regression analyses for categorical data. Journal of the Royal Statistical Society, Series B 1992; 54:3-40.

6. Heagerty PJ, Zeger SL. Marginalized multilevel models and likelihood inference (with discussion). Statistical Science 2000; 15:1 -26.

7. Lindsey JK, Lambert P. On the appropriateness of marginal models for repeated measurements in clinical trials. Statistics in Medicine 1998; 17:447-469.

8. Goldstein H, Rasbash J. Efficient computational procedures for the estimation of parameters in multilevel models based on iterative generalised least squares. Computational Statistics and Data Analysis 1992; 13:63-71.

9. Longford NT. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested effects. Biometrika 1987; 74:812-827.

10. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.

11. Bryk AS, Raudenbush SW. Hierarchical Linear Models. Sage: Newbury Park, California, 1992.

12. Rasbash J, Browne W, Goldstein H, Yang M, Plewis, I, Healy M, Woodhouse G, Draper D, Langford I, Lewis T. A User's Guide to MlwiN. (2nd edn.). Institute of Education: London, 2000.

13. Goldstein H. Multilevel mixed linear model analysis using iterative generalised least squares. Biometrika 1986; 73:43-56.

14. Zhou X, Perkins AJ, Hui SL. Comparisons of software packages for generalized linear multilevel models. American Statistician 1999; 53:282-290.

15. Spiegelhalter DJ, Thomas A, Best NG. WinBUGS Version 1.3: User Manual. MRC Biostatistics Research Unit: Cambridge, 2000.

16. Goldstein H, Healy MJR, Rasbash J. Multilevel time series models with applications to repeated measures data. Statistics in Medicine 1994; 13:1643-1655.

17. Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood.

Biometrics 1997; 53:983-997.

18. Goldstein H. Multilevel Statistical Models. Arnold: London, 1995.

19. Grizzle JC, Allen DM. An analysis of growth and dose response curves. Biometrics 1969; 25:357-361.

20. Albert PS. Longitudinal data analysis (repeated measures) in clinical trials. Statistics in Medicine 1993; 18: 1707-1732.

21. Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 1999; 86:677-690.

22. Pourahmadi M. Maximum likelihood estimation of generalised linear models for multivariate Normal covariance matrix. Biometrika 2000; 87:425-436.

23. Diggle PJ. An approach to the analysis of repeated measurements. Biometrics 1988; 44:959-971.

24. Goldstein H. Flexible models for the analysis of growth data with an application to height prediction. Revue Epidemiologie et Sante Publique 1989; 37:477 -484.

25. Goldstein H, Yang M, Omar R, Turner R, Thompson S. Meta analysis using multilevel models with an application to the study of class size effects. Journal of the Royal Statistical Society, Series C 2000; 49: 399-412.

26. Raudenbush, SW. A crossed random effects model for unbalanced data with applications in cross sectional and longitudinal research. Journal of Educational Statistics 1993; 18:321-349.

27. Rasbash J, Goldstein H. Efficient analysis of mixed hierarchical and cross classified random structures using a multilevel model. Journal of Educational and Behavioural Statistics 1994; 19:337-350.

28. Rasbash J, Browne W. Non-hierarchical multilevel models. In Multilevel Modelling of Health Statistics, Leyland A, Goldstein H (eds). Wiley: Chichester, 2001.

29. Hill PW, Goldstein H. Multilevel modelling of educational data with cross-classification and missing identification of units. Journal of Educational and Behavioural Statistics 1998; 23:117-128.

30. Langford I, Leyland AH, Rasbash J, Goldstein H. Multilevel modelling of the geographical distributions of diseases. Journal of the Royal Statistical Society, Series C 1999; 48:253-268.

31. Goldstein H, Rasbash J, Browne W, Woodhouse G, Poulain M. Multilevel models in the study of dynamic household structures. European Journal of Population 2000; 16:373-387.

32. Hedges LV, Olkin IO. Statistical Methods for Meta Analysis. Academic Press: Orlando, Florida, 1985.

33. Raudenbush S, Bryk AS. Empirical Bayes meta-analysis. Journal of Educational Statistics 1985; 10:75-98.

34. Hedeker D, Gibbons R. A random effects ordinal regression model for multilevel analysis. Biometrics 1994; 50:933-944.

35. Raudenbush SW, Yang M, Yosef M. Maximum likelihood for generalised linear models with nested random effects via high-order multivariate Laplace approximation. Journal of Computational and Graphical Statistics 2000; 9:141-157.

36. Barbosa MF, Goldstein H. Discrete response multilevel models for repeated measures; an application to voting intentions data. Quality and Quantity 2000; 34:323-330.

37. Olsen MK, Schafer JL. A two-part random effects model for semi- continuous longitudinal data. Journal of the American Statistical Association 2001; 96:730-745.

38. Clayton DG. A Monte Carlo method for Bayesian inference in frailty models. Biometrics 1991; 47:467-485.

39. McCullagh P, Nelder J. Generalised Linear Models. Chapman and Hall: London, 1989.

40. Browne W, Draper D. Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics 2000; 15:391 -420.

41. Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern analysis and Machine Intelligence 1984; 45:721-741.

42. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics 1953; 21:1087-1092.

43. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970; 57:97-109.

44. Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistics Society, Series C 1992; 41:337-348.

45. Goldstein H. Consistent estimators for multilevel generalised linear models using an iterated bootstrap. Multilevel Modelling Newsletter 1996; 8(1):3-6.

46. Carpenter J, Goldstein H, Rasbash J. A nonparametric bootstrap for multilevel models. Multilevel Modelling Newsletter 1999; 11(1):2-5.

Was this article helpful?

0 0
Relaxation Audio Sounds Autumn In The Forest

Relaxation Audio Sounds Autumn In The Forest

This is an audio all about guiding you to relaxation. This is a Relaxation Audio Sounds with sounds from Autumn In The Forest.

Get My Free MP3 Audio


Post a comment