Fig. 11.8a-d. Detection of masses b a d c at matching the polyp pairs after they are detected (Iordanescu and Summers 2003; Li et al. 2004; Nain et al. 2002). Such a method would permit radiologists easily to identify the matched polyps in both views for subsequent detailed examination. For example, the CAD user interface in Figure 11.1 provides such a polyp matching function as shown in the middle two windows on the screen.

Only a few studies have addressed the challenge of using the supine-prone correspondence for improving the detection performance of CAD. One of these established a regional correspondence between supine and prone data sets of a patient by dividing of the colon into overlapped regions (Nappi et al. 2005a). Figure 11.9 shows an example of the overlapped regions, in which a narrow region (light gray) indicates the overlap between the two neighboring regions (dark gray and black). In this study, a polyp candidate was kept as a detected polyp if both of the corresponding regions in the supine and prone views contain the polyp candidate (gray circle). On the other hand, if only one of the corresponding regions contains a polyp candidate, it was removed as a false-positive detection (white circle). Use of this region-based correspondence method in CAD reduced the number of false-positive detections by 20% while maintaining a 90% by-patient detection sensitivity (Nappi et al. 2005a).

The preliminary result is encouraging; however, further investigations need to be conducted for demonstrating that the use of both the prone and supine views is truly useful for CAD to achieve a high specificity.

Managing Diverticular Disease

Managing Diverticular Disease

Stop The Pain. Manage Your Diverticular Disease And Live A Pain Free Life. No Pain, No Fear, Full Control Normal Life Again. Diverticular Disease can stop you from doing all the things you love. Seeing friends, playing with the kids... even trying to watch your favorite television shows.

Get My Free Ebook

Post a comment