Review of the medical records

Emergency Room Records

No commonly accepted guideline is followed for the management of head injury in the emergency room. Efforts are currently being made to synthesize this knowledge, and as new knowledge is acquired, attempts are being made to develop a protocol.102 Most American emergency departments now use the Glasgow Coma Scale (GCS) to quantify the neurological findings on a scalar basis. This has at least improved uniformity of descriptors for patients who have sustained head injuries.103,104

All clinicians should obtain the emergency room record of a patient following brain trauma if possible. Significant elements of useful information can be gleaned that may assist in the neurop-sychiatric evaluation of traumatized patients. When reviewing the emergency room record, if the Glasgow Coma Scale has been followed, the issue of coma is generally well understood. Coma is defined as the inability to obey commands, utter words, and open the eyes.105 The fully oriented patient will score 15 points on the GCS. A flaccid patient who does not open his eyes, vocalize, or move to stimulus will score 3 points on the GCS. No single score within the range of 3 to 15 points forms a basis for a diagnosis of coma. However, it is generally agreed among neurosurgeons that 90% of all patients with a score of 8 or less, and none of those with a score of 9 or more, are found to be in coma using the preceding definition. Therefore, a Glasgow Coma Scale score of 8 or less has become the generally accepted emergency department definition of coma.

In general, the clinician will find that a patient who has sustained a mild head injury (defined as GCS = 13 to 15) will undergo a general examination to exclude systemic injuries, and he receives a limited neurological examination. X-rays, usually of the cervical spine, are obtained. A blood alcohol level and urine drug abuse screen are often obtained. A computed tomography (CT) scan of the head is the standard of care in all patients except those who are completely asymptomatic and neurologically normal. In a patient with a moderate head injury (defined as GCS = 9 to 12), the patient generally is confused or somnolent but still able to follow simple commands. The initial workup is the same as noted previously, but a CT scan is mandatory in all cases. The patient should be admitted for observation, and frequent follow-up neurological checks are made. If there is any deterioration in the cognitive state, a follow-up CT scan is obtained.

A severe head-injured patient (defined as GCS = 3 to 8) is unable to follow even simple commands, as consciousness is too impaired to allow response. The emergency room physician, in most cases, will obtain neurosurgical consultation in these patients, and the neurosurgeon generally will check for pupillary light reaction and oculocephalic reflex (doll's eyes), and possibly perform caloric testing to measure the oculovestibular reflex. Mannitol may be administered, but there is controversy regarding whether it should be administered only when focal neurologic findings are present or on a routine basis. Hyperventilation is also recommended, and the observer may note that this has been performed. Most experts recommend that hyperventilation be used judiciously in an effort to keep the PCO2 at approximately 30 mmHg. Excessive hyperventilation can cause cerebrovascular constriction of such severity that cerebral ischemia may develop.106

The evaluating physician should carefully review the emergency room record to see if other common associated factors have occurred with the brain injury. This can be determined by a review of what physicians did in the emergency department. Is there indication that the patient was intoxicated at the time of injury? Does the patient have nontraumatic coma? For instance, is this a person who was assumed to have suffered a head injury but later was found to have another etiology for her coma? Was there an associated spinal cord injury? Were transfusions needed because of bleeding elsewhere? While mannitol, hyperventilation, and fluid resuscitation are used generally in traumatized patients who have sustained a brain injury, steroids are now discouraged. Clear proof of benefit has not been shown, and some patients have sustained deleterious effects following their use.107

The Hospital Record

Basically, review of the hospital record is indicated to determine if complications arose that may have a bearing on the posthospital management of the patient. Moreover, in the neuropsychiatric examination, there may have been ancillary injuries that have played an adverse role on the neuropsychiatric outcome of the patient following brain injury, or have contributed to difficulties in rehabilitation. The patient may have sustained a significant neurogenic cardiovascular complication from the brain injury. Myocardial injury may occur in up to 50% of head-injured patients, even in the absence of coronary artery disease.69 Myocardial dysfunction following brain trauma has been well described in adults, but it is also seen in children.108 The lesions produced in the heart are similar to those seen after an acute myocardial infarction, with pheochromocytoma, or following catecholamine infusion. At autopsy, subendocardial hemorrhages are commonly found. No clear relationship has been found pathologically, but it is thought that there may be an association between hypothalamic lesions and myocardial damage.109 In those patients who have sustained such myocardial injury, the neuropsychiatric examiner will generally find that catecholamine inhibitors and adrenergic inhibitors have been used for treatment while the patient was in the neurosur-gical ICU.

Following brain injury, many patients complain that they breathe poorly or cannot breathe as well as they did prior to their brain injuries. Respiratory system dysfunction is commonly found as a complication of traumatic brain injury. The most dramatic disorder the examiner may note in the medical records is neurogenic pulmonary edema. This is a variant of the adult respiratory distress syndrome (ARDS) seen with general body trauma and other diseases. A common cause of death in patients who have sustained an intracranial hemorrhage or severe isolated head injury is neurogenic pulmonary edema.110,111 Other pulmonary complications of head injury include infection. Neurosurgeons have learned that many earlier causes of pneumonia found in the brain-injured patient came about as a result of neutralization of gastric pH by antacids or H2 receptor blockers. This allowed overgrowth of gram-negative bacteria in the stomach, which colonized the trachea. Sucralfate has become more commonly used as a stress gastric prophylaxis rather than H2 blockers in many instances.112 It is also common for head-injured patients to remain at risk for pulmonary problems during rehabilitation, and some traumatically brain-injured patients will remain with variable compromise of pulmonary function.

Head-injured patients are noteworthy for having greater risk of deep vein thrombosis and secondary pulmonary embolus. These patients are at moderate to high risk for such complications, and the neuropsychiatric review of the medical records should determine if these have in fact occurred. Some patients may have even required a Greenfield filter by vena cava placement.113 Coagulopathy is another common adverse outcome following traumatic head injury. Brain tissue is a potent stimulator of disseminated intravascular coagulopathy (DIC) and, in fact, is used as an agent to initiate clotting in certain blood tests. Brain tissue injury, together with injury to endothelial cells of local vessels, can initiate DIC, which may be exacerbated by the accompanying catechola-mine release due to severe injury.114 As a result of DIC, delayed or postoperative intracranial hematomas may occur. Even more problematic is the patient who may have received a ventriculostomy and then developed a hematoma along the path of the catheter.115,116 As the neuropsychiatric examiner is reviewing the medical records, the presence of DIC will generally be indicated by the need for replacement of depleted clotting factors, generally with fresh-frozen plasma. Cryoprecip-itate may also be used.

Brain trauma results in a severe physiological stress to the body and elevates adrenocorticotropic hormone (ACTH) release. This secondarily increases cortisol secretion. Brain injury to the frontal brain parts may damage the hypothalamus and pituitary. If the injury is severe, the result is usually death. Rarely, the patient develops a syndrome of inappropriate antidiuretic hormone secretion (SIADH) or panhypopituitarism. Infrequently, loss of thermoregulation may occur due to hypotha-lamic damage. These are usually low-likelihood events occurring in less than 1% of brain-injured persons; but when they do occur, they can cause significant difficulty to the patient.109 An endocri-nologist may be required to manage some patients following brain injury, and, depending on the particular releasing factor deficiency, adjunctive hormonal replacements may be needed.117

Gastrointestinal complications frequently occur following head injury. In reviewing the medical records, the neuropsychiatric examiner may notice that enteral feeding was instituted. It is thought that this nutritional support decreases infectious complications in patients, particularly the development of pneumonia. Moreover, the gut may be an important central engine for the development of multiple-organ failure syndromes, and the early institution of feedings is often done in neuro-surgical centers today.118 Stress gastritis frequently occurs in head-injured patients with a clinical incidence of up to 75%.119

Cognitive Rehabilitation Records

If the traumatic brain injury produced significant cognitive deficits in the individual, or if the person has substantial evidence of physical impairments, the person is usually transferred to a brain injury rehabilitation unit following discharge from the acute care hospital. There are vast differences in the quality of cognitive rehabilitation programs, and the examiner should keep this in mind when reviewing these records. At the most basic level, cognitive rehabilitation programs may focus on individual skill development through repetitions or rely upon devices such as memory notebooks. However, these may not be effective in overall cognitive rehabilitation.120 On the other hand, many skilled facilities across the U.S. provide superb care. In general, the evaluator will notice three major foci of rehabilitation techniques: (1) attentional rehabilitation, (2) feature identification rehabilitation, and (3) categorization rehabilitation. The treatment environment for attention deficits uses stimulus-enhanced techniques. These generally are both auditory and visual stimuli. Some cognitive rehabilitation specialists utilize the Premack principle. This principle assumes that any behaviors that are spontaneously produced may be viewed as reinforcing to the organism, and techniques utilizing this principle are often provided to patients requiring attentional deficit rehabilitation.121

Many brain-injured persons perseverate. Perseveration is thought by many to be an inability to shift a focus of attention, and therefore, the person continually repeats the behavior or task. The perseveration behavior may coexist with inability to maintain vigilance. Vigilance often refers to an individual's ability to maintain a focus of attention and self-monitor incoming stimuli in order to screen for a specific set of features. Vigilance is one of the most complicated attentional skills, and therapy may concentrate on maintaining a focus of attention in a stimulus-rich environment where multiple distracters are present. Another attentional deficit often seen and treated during cognitive rehabilitation is the inability to cognitively shift. It is more complicated than either vigilance or suppression of perseveration. Cognitive shifting requires the person to mentally shift between activities with the least amount of disruption to the information being received and stored. Generally, a therapist will have the patient begin with shifting physical tasks from one task to another, then progress to shifting from a physical task to a mental task, and then lastly focus upon shifting strictly from one mental task to another.

Feature identification is done automatically by all of us. However, brain-injured persons have specific difficulties performing this skill. From the time of early infant development, all individuals must learn to attend to and identify the iconic features of objects. This includes such features as color, shape, texture, weight, etc. Individuals with language disorders may become unable to describe or name an object and instead will mention its function. For instance, instead of naming a cup, the individual may describe its use as a drinking utensil. The remediation of deficits of feature identification generally requires the individual to focus on a checklist of seven or eight iconic features such as color, shape, etc. Then the person progresses through steps in the hierarchy to gradually increase her skill at feature identification.

After a person relearns to identify features of objects, the rehabilitation then helps the individual learn to categorize. Categorization is learned very much like feature identification in that the person is guided to separate the color from the form of an object. For instance, an apple, fire truck, and cardinal all share the same red color. The individual is gradually challenged in an increasingly difficult hierarchy to define symbolic or functional categories and separate these from features, such as color, that place separate categories into the same group.

Occupational and Physical Therapy Records

The rehabilitation records should contain considerable information regarding the person's ability to manipulate objects. Moreover, documentation of balance is usually available. However, depending on the level of skill of the examiner in the rehabilitation facility, it may not provide the neuropsychiatric examiner with adequate information. This, of course, can be obtained during psychiatric observation or neurological testing. The record should be examined for complaints of headache, blurred vision, or nausea, particularly after physical activity or a change in the attitude of the head in space. This may indicate vestibular dysfunction.122

Generally, information will be contained in these records regarding the range of motion of extremities and trunk. Also, statements about the neurologic status and whether hemiparesis is present can be found generally. Physical therapy records will be most important in determining the strength in extremities and overall physical endurance of the person. If the person is hemiparetic, or has quadriparesis, the physical and occupational therapy records will yield information generally regarding the quality of movement. Information explaining how the injured person transfers from wheelchair to car, from car to wheelchair, from bed to wheelchair, from bed to commode, and other important motor information can be determined. This information is very useful to the neuropsychiatric examiner as the examination may take place a significant time following discharge from rehabilitation. Thus, a comparison of continued progress can be made qualitatively, if not quantitatively.

Speech and Language Pathology Records

Early on in traumatic brain injury, particularly while in the acute care hospital or early in the rehabilitation hospital, the speech and language pathologist will make at least an initial screening assessment. This information will be contained in the record where the evaluation proceeds. In those rare instances where a true language disorder exists following traumatic brain injury (see Chapter 2), extensive language rehabilitation may be undertaken.

The speech and language records are very helpful in determining whether the person had oromotor dyspraxia or dysarthria. If the patient has a brain stem injury, speech and language pathologists often assist radiologists in performing cineographic swallowing studies. These are particularly important in a patient who may be at risk for aspiration. With regard to voice production, the records may be revealing regarding velopharyngeal integrity and whether the communication skills of the patient are impaired.123124

Anxiety Away

Anxiety Away

The strategies revealed within Anxiety Away are fast acting, simple and guaranteed to work even if you have suffered from anxiety for a long time!

Get My Free Ebook


Post a comment